
银河麒麟高级服务器操作系统 kmod驱动

软件包制作流程及说明

麒麟软件有限公司

服务器研发中心

2025年 05月 19日

版本说明

版本号 版本说明 作者 日期 变更内容

V1.0 编写文档 秦凡东 2025-05-19 首次创建

1 约定

文档默认阅读者已经掌握了基本的 RPM软件包打包技术，例如打包流程和

操作、RPM SPEC文件的编写等。在此基础上，进行 kmod软件包打包的指导

说明。阅读者可以根据指导，将一个已经包含Makefile在内的、可成功编译的

内核模块打包为 kmod软件包。

2 Kmod软件包工作原理说明

kmod 软件包通过调用 weak-modules来实现一个内核版本编译的模块

可以在多个内核版本下使用。weak-modules 的原理是通过在目标内核版本

weak-updates/目录内创建软连接，来实现内核模块在无需重新编译的情况下

被多个内核版本使用。

例如，kmod软件包 kmod-hello，提供内核模块：

/lib/modules/4.19.90-89.21.v2401.ky10.x86_64/extra/hello/hello.
ko

通过 weak-modules --add-modules处理后，根据不同的目标内核版本，

会有若干个 weak-updates/目录的软链接被创建并指向真实的内核模块地址。

以下为一个示例环境：

/lib/modules/4.19.90-89.11.v2401.ky10.x86_64/weak-updates/h
ello/hello.ko: symbolic link to
/lib/modules/4.19.90-89.21.v2401.ky10.x86_64/extra/hello/hello.ko

/lib/modules/4.19.90-89.20.v2401.ky10.x86_64/weak-updates/h
ello/hello.ko: symbolic link to
/lib/modules/4.19.90-89.21.v2401.ky10.x86_64/extra/hello/hello.ko

对应地，weak-modules --remove-modules则用来删除这些软链接。

3 RPM SPEC文件编写指导

3.1 事务处理

因为 kmod软件包通过调用 weak-modules工作，所以软件包的事务处理

至关重要。将内核模块打包为 kmod软件包，需要在事务处理中做以下动作：

1. 在软件包安装后，调用 weak-modules在目标内核创建软链接

2. 在软件包卸载后，调用 weak-modules删除对应的软链接

通常在%post段（安装后执行）完成动作 1.，以下为 kmod-hello软件包

中的内容，可作为基本示例：

modules=($(find
/lib/modules/%{kmod_kernel_version}.$(uname
-m)/extra/%{kmod_name} -name '*.ko'))

printf '%s\n' "${modules[@]}" | %{_sbindir}/weak-modules
--add-modules

因为 kmod-hello将内核模块安装至内核的 extra/目录，所以首先找出

extra/目录下的内核模块。之后将这些内核模块通过管道传递给

weak-modules -add-modules命令的标准输入，每行一个。

通常使用%preun段（卸载前执行）和%postun段（卸载后执行）完成动

作 2.，以下为 kmod-hello软件包中的内容，可作为基本示例：

%preun
mkdir -p $(dirname "%{dup_module_list}")
rpm -ql %{name}-%{version}-%{release}.%{_arch} | grep -P

'[.]ko$' >"%{dup_module_list}"

%postun
if [[-r "%{dup_module_list}"]]
then
modules=($(cat "%{dup_module_list}"))
rm -f "%{dup_module_list}"
printf '%s\n' "${modules[@]}" | %{_sbindir}/weak-modules

--remove-modules
fi

首先在%preun段中，读取软件包的内核模块列表，存放到临时文件。卸

载软件包后，通过临时文件读取软件包的内核模块列表，将这些内核模块通过管

道传递给 weak-modules -remove-modules命令的标准输入，每行一个。

对应地，需要在软件包 SPEC中定义事务处理过程中使用的宏：

%define
kernel_source %{_usrsrc}/kernels/%{kmod_kernel_version}.%{_arc
h}

%define
dup_state_dir %{_localstatedir}/lib/rpm-state/kmod-dups

%define
dup_module_list %{dup_state_dir}/rpm-kmod-%{kmod_name}-mod
ules

3.2 软件包命名

软件包应以”kmod-名称”命名，如 hello内核模块，对应的 kmod软件包

名应为”kmod-hello”。在 SPEC文件中可以通过以下宏定义指定软件包名称：

Name: kmod-hello

SPEC文件建议保持和 Name字段同名，如 kmod-hello.spec。

3.3 重新实现 post install 宏

在 kmod文件开始处定义以下宏，以规避一个 brp-strip会删除内核模块签

名的问题，每个 kmod的 RPM SPEC都需要有以下的宏定义：

%define __spec_install_post /usr/lib/rpm/check-buildroot \
/usr/lib/rpm/kylin/brp-ldconfig \
/usr/lib/rpm/brp-compress \

/usr/lib/rpm/brp-strip-comment-note /usr/bin/strip /usr/bin/objdump \
/usr/lib/rpm/brp-strip-static-archive

/usr/bin/strip \

/usr/lib/rpm/brp-python-bytecompile "" 1 \
/usr/lib/rpm/brp-python-hardlink

3.4 不生成 debuginfo

在 RPM SPEC开头定义以下宏以避免生成 debuginfo软件包：

%define debug_package %{nil}

3.5 定义编译所需的内核版本

使用以下宏定义编译所需的内核版本：

%{!?kmod_kernel_version: %define kmod_kernel_version
4.19.90-89.21.v2401.ky10}

3.6 定义编译依赖和安装依赖

以下是必需的编译依赖和安装依赖，注意这里指定了只能在大于或等于 3.5

节定义的内核版本系统的环境中安装：

BuildRequires: elfutils-libelf-devel
BuildRequires: kernel-devel = %{kmod_kernel_version}
BuildRequires: kernel-rpm-macros
Requires(post): %{_sbindir}/weak-modules
Requires(postun): %{_sbindir}/weak-modules
Requires: kernel >= %{kmod_kernel_version}

3.7 定义必需的别名

Provides:
kernel-modules >= %{kmod_kernel_version}.%{_arch}

Provides: kmod-%{kmod_name}
= %{?epoch:%{epoch}:}%{version}-%{release}

3.7 在%install中签名软件包

Sign the modules(s)
%if %{?_with_modsign:1}%{!?_with_modsign:0}
If the module signing keys are not defined, define them here.
%{!?privkey: %define

privkey %{_sysconfdir}/pki/SECURE-BOOT-KEY.priv}
%{!?pubkey: %define

pubkey %{_sysconfdir}/pki/SECURE-BOOT-KEY.der}
for module in $(find %{buildroot} -type f -name *.ko)
do
%{_usrsrc}/kernels/%{kmod_kernel_version}.%{_arch}/script

s/sign-file sha256 %{privkey} %{pubkey} $module;
done
%endif

4 RPM SPEC文件示例

以下为软件包和软件包中的 SPEC文件示例。软件包如下:

SPEC文件如下：

Fix for the SB-signing issue caused by a bug in
/usr/lib/rpm/brp-strip

https://bugzilla.redhat.com/show_bug.cgi?id=1967291
%define __spec_install_post \
/usr/lib/rpm/check-buildroot \
/usr/lib/rpm/kylin/brp-ldconfig \
/usr/lib/rpm/brp-compress \
/usr/lib/rpm/brp-strip-comment-note /usr/bin/strip

/usr/bin/objdump \
/usr/lib/rpm/brp-strip-static-archive /usr/bin/strip \
/usr/lib/rpm/brp-python-bytecompile "" 1 \
/usr/lib/rpm/brp-python-hardlink \

If kmod_kernel_version isn't defined on the rpmbuild line,
define it here.

%{!?kmod_kernel_version: %define kmod_kernel_version
4.19.90-89.21.v2401.ky10}

%define kmod_name hello
%define debug_package %{nil}
%define

kernel_source %{_usrsrc}/kernels/%{kmod_kernel_version}.%{_arc
h}

%define
dup_state_dir %{_localstatedir}/lib/rpm-state/kmod-dups

%define
dup_module_list %{dup_state_dir}/rpm-kmod-%{kmod_name}-mod
ules

Name: kmod-%{kmod_name}
Version: 1.0
Release: 1
Summary: %{kmod_name} kernel module(s)
Group: System Environment/Kernel
License: GPLv2
URL: http://www.example.com/

Source0: %{kmod_name}-%{version}.tar.xz

ExclusiveArch: x86_64 aarch64 loongarch64

BuildRequires: elfutils-libelf-devel
BuildRequires: kernel-devel = %{kmod_kernel_version}
BuildRequires: kernel-rpm-macros

Provides:
kernel-modules >= %{kmod_kernel_version}.%{_arch}

Provides: kmod-%{kmod_name}
= %{?epoch:%{epoch}:}%{version}-%{release}

Requires(post): %{_sbindir}/weak-modules
Requires(postun): %{_sbindir}/weak-modules
Requires: kernel >= %{kmod_kernel_version}

%description
%{kmod_name} kernel module(s).

%prep
%autosetup -n %{kmod_name}-%{version}

%build
%{__make} %{?_smp_mflags} all KDIR=%{kernel_source}

%install
%{__install}

-d %{buildroot}/lib/modules/%{kmod_kernel_version}.%{_arch}/ext
ra/%{kmod_name}/

%{__install}
*.ko %{buildroot}/lib/modules/%{kmod_kernel_version}.%{_arch}/e
xtra/%{kmod_name}/

strip modules(s)
find %{buildroot} -type f -name '*.ko' -exec %{__strip}

--strip-debug \{\} \;

Sign the modules(s)

%if %{?_with_modsign:1}%{!?_with_modsign:0}
If the module signing keys are not defined, define them here.
%{!?privkey: %define

privkey %{_sysconfdir}/pki/SECURE-BOOT-KEY.priv}
%{!?pubkey: %define

pubkey %{_sysconfdir}/pki/SECURE-BOOT-KEY.der}
for module in $(find %{buildroot} -type f -name *.ko)
do
%{_usrsrc}/kernels/%{kmod_kernel_version}.%{_arch}/script

s/sign-file sha256 %{privkey} %{pubkey} $module;
done
%endif

%post
modules=($(find

/lib/modules/%{kmod_kernel_version}.$(uname
-m)/extra/%{kmod_name} -name '*.ko'))

printf '%s\n' "${modules[@]}" | %{_sbindir}/weak-modules
--add-modules

%preun
mkdir -p $(dirname "%{dup_module_list}")
rpm -ql %{name}-%{version}-%{release}.%{_arch} | grep -P

'[.]ko$' >"%{dup_module_list}"

%postun
if [[-r "%{dup_module_list}"]]

then
modules=($(cat "%{dup_module_list}"))
rm -f "%{dup_module_list}"
printf '%s\n' "${modules[@]}" | %{_sbindir}/weak-modules

--remove-modules
fi

%files
%defattr(644,root,root,755)
/lib/modules/%{kmod_kernel_version}.%{_arch}/

%changelog
* Thu May 15 19:40:09 CST 2025 Qin Fandong

<qinfandong@kylinos.cn> - 1.0
- Say hello.

以上演示了 kmod软件包的原理和制作流程，实际过程中需要针对具体的

编译构建来定制打包过程。

	银河麒麟高级服务器操作系统kmod驱动软件包制作流程及说明
	版本说明
	1 约定
	2 Kmod软件包工作原理说明
	3 RPM SPEC文件编写指导
	3.1 事务处理
	3.2 软件包命名
	3.3 重新实现 post install 宏
	3.4 不生成debuginfo
	3.5 定义编译所需的内核版本
	3.6 定义编译依赖和安装依赖
	3.7 定义必需的别名
	3.7 在%install中签名软件包

	4 RPM SPEC文件示例

