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1 DKMS功能

DKMS全称是 DynamicKernel ModuleSupport，是用来生成 Linux 内核模块的

一个框架，它可以帮我们维护内核外的驱动程序，这种模块的源代码一般不在 Linux 内核

源代码树中。当新的内核安装时，DKMS 支持的内核模块会自动重建。

2 DKMS包名规范

dkms软件包的命名规范需遵循《银河麒麟桌面操作系统 V10-DEB包打包规范》，

在 此 基 础 上 DKMS 包 的 命 名 方 式 是 需 要 在 源 码 包 名 加 "-dkms" 后 缀 ， 即

packagename-dkms。

全名格式：packagename-dkms_version_platform.deb

长度要求：包全名长度最大为 255 个字符。

packagename应包含驱动模块的设备类型、厂商、驱动及型号信息，命名规范为：

{设备类型}-driver-厂商-{型号或系列}，示例如 net-driver-rtk-811B。如果该驱动包适

用于此厂商该设备类型的所有型号，则命名规范建议为 :{设备类型}-driver-厂商

-{common}，示例如 net-driver-rtk-common。

2.1 依赖

依赖的包应该是原来软件包的基础上，加上 dkms 包及目标版本内核头文件

linux-headers。

2.2 源代码构建位置

DKMS 要求我们的代码目录必须以-的格式命名，构建模块所需源代码需要放在

/usr/src/MODULE_NAME-MODULE_VERSION目录下，此目录是 DKMS构建模块时使

用的默认目录。

2.3 DKMS命令

dkms使用命令格式

dkms [action] [options] [module/module-version] [/path/to/source-tree]

[/path/to/tarball.tar] [/path/to/driver.rpm]

https://archlinux.org/packages/?name=dkms
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2.3.1 ACTIONS
 查看 DKMS模块状态

dkms status [module/module-version] [-k kernel/arch]

查看 DKMS模块状态，如若未指定module等信息，则默认显示所有 dkms模块

状态，模块状态有 added,built及 installed三种状态。

 添加 DKMS模块

dkms add [module/module-version] [/path/to/source-tree] [/path/to/tarball.tar]

 移除 DKMS模块

dkms remove [module/module-version] [-k kernel/arch] [--all]

--all 参数是将指定模块从所有内核中移除，-k <kernel-version>参数移除与指定

内核版本匹配的模块。

 编译 DKMS模块

dkms build [module/module-version] [-k kernel/arch]

为指定内核编译module/version，如若未指定-k选项，则默认为当前运行的的内

核和架构。

 安装 DKMS模块

dkms install [module/module-version] [-k kernel/arch] [/path/to/driver.rpm]

安装指定模块，如果未指定内核和架构，则默认安装到当前正在运行的内核中。如

果当前模块未添加或被编译，使用 install命令，dkms则会去尝试添加和编译，如果添加

和编译成功，dkms则会安装此模块。

 重新构建内核模块

dkms autoinstall

为当前内核重新构建所有的 dkms模块。

 卸载 DKMS模块

dkms uninstall [module/module-version] [-k kernel/arch]

从指定内核中卸载已安装的模块，如果未指定-k参数，则默认卸载在当前运行内核

上卸载此模块。卸载的模块仍然处于 build 状态，如果需要完全删除此驱动，则需使用

remove命令删除。

 使用 DKMS制作模块 deb包



3

dkms mkdeb [module/module-version] [-k kernel/arch]

此 命 令 是 为 指 定 版 本 的 模 块 创 建 deb 二 进 制 包 。 它 使 用

/etc/dkms/template-dkms-mkdeb中的模板 debian目录作为包的基础。如果 DKMS

找到一个名为/usr/src/<module>-<module-version>/<module>-dkms-mkdeb 的

文件，它将使用该文件夹。

 创建 DKMS模块源代码压缩包

dkms mktarball [module/module-version] [-k kernel/arch] [--archive

/path/to/tarball.tar] [--source-only] [--binaries-only]

此命令将会创建指定内核模块的压缩包，包括源码及编译后的模块。可以指定一个

内核来进行压缩，也可以针对多个内核来对模块进行压缩，如 -k kernel1/arch1 -k

kernel2/arch2。可以使用--archive参数来指定要打包到压缩包的文件。如果想生成只含

二进制文件的压缩包，则使用--binaries-only。如果想生成只包含源代码的压缩文件，则

使用--source-only。【注意】若只压缩二进制包则需在 build之后才能使用此命令创建压

缩包。

 使用 DKMS加载 tarball

dkms ldtarball [/path/to/tarball.tar] [--force]

此命令可以加载mktarball命令打包的压缩包到 DKMS树，加载后可以使用 dkms

tatus命令查看到对应的模块，此模块处于 built状态。如果加载的模块文件目录已存在，

则会发出警告并终止加载。如需覆盖，可使用--force。

2.3.2 OPTIONS
常用 options：

参数 说明

-m <module>/<module-version> 指定模块名字及版本

-v <module-version> 指定模块版本，只能跟-m搭配使用（且-m未指

定模块版本），如-m hello -v 0.1

-k <kernel-version>/<arch> 指定内核版本及架构，可使用多个-k参数来指定

多内核及架构；
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-a，--arch 指定系统架构，与-k使用，如未指定则默认使用

当前运行系统的架构。可使用多个-a参数指定多

个架构，但每个-a参数均需与-k配套使用，即-个

-a参数对应一个-k参数，系统自动将第一个-a参

数与第一个-k参数匹配在一起，以此类推；

-V, --version 打印当前已安装 dkms版本并退出

2.4 dkms.conf配置文件

在软件源码目录下，要包含一个 dkms.conf 配置文件，告诉 DKMS 如何编译。dkms.conf

配置文件常用参数见下：

 PACKAGE_NAME ：此选项指定模块名称，此名称与 dkms添加，编译等命令时使用

的-m后的名称保持一致。此选项为 dkms.conf的必填项；

 PACKAGE_VERSION ：指定模块的软件版本，此选项为 dkms.conf的必填项；

 CLEAN：用于指定用于在构建模块前后进行清理的命令，如未设置，则默认为”make

clean”命令；

 PATCH[#]：使用 PATCH数组来指定补丁，每个 PATCH都需要指定要应用的补丁文

件 名 。 且 所 有 的 补 丁 包 都 需 要 放 置 在 源 目 录 的 补 丁 子 目 录

/usr/src/<module>-<module-version>/patches/ 。如果想使用指定的 patch，

则需要用 PATCH_MATCH[#]配套使用，PATCH_MATCH[#]中指定相应的正则表达

式，如果正则表达式与当前构建模块的内核匹配，则提醒 dkms仅使用该 PATCH[#]。

如 若 没 有 任 何 补 丁 被 成 功 应 用 ， 则 停 止 编 译 ， 编 译 失 败 信 息 会 记 录 到

/var/lib/dkms/<module>/<module-version>/build/中；

 PATCH_MATCH[#]：参照 PATCH[#]指令说明。如只想在某些情况下应用补丁，则需

要在编译之前使用 PATCH_MATCH[#]来指定正则表达式，该正则表达式指定与此

patch匹配的内核，如当前内核与此匹配，则应用这个补丁；

 AUTOINSTALL：当设置为“yes”时，则/etc/rc.d/init.d/dkms_autoinstaller服务

会自动尝试在启动的内核上安装此模块。dkms_autoinstaller服务是在系统引导时检

查当前内核版本和已安装的 DKMS模块，如果发现有模块需要更新，则会触发重新编

译和安装操作，确保系统在内核更新后仍然能够正常使用这些模块。需要了解更多，可
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阅读 dkms_autoinstaller说明；

 MAKE[0]：用来设定编译的命令，默认的make命令放在MAKE[0]中。MAKE[#]数

组 中 的 其 他 编 译 命 令 只 有 在 与 MAKE_MATCH[#]匹 配 时 才 会 使 用 。 如 果

MAKE_MATCH[#]中没有为任何 MAKE[#](#>0)设置正则表达式，则忽略该

MAKE[#]指令。如果多个 MAKE_MATCH指令与正在构建的内核匹配，则最后一个匹

配的 MAKE[#]将用于构建模块。如果没有指定 MAKE 指令，或者如果没有

MAKE_MATCH与正在构建的内核匹配，DKMS将尝试使用通用的 MAKE命令来构建

模块。一般情况下是不用设定的；

 MAKE_MATCH[#]：请参阅 MAKE[#]说明。此数组指定正则表达式，当与正在构建

的内核匹配时，则使用执行对应 MAKE[#]指令来构建模块；

 BUILT_MODULE_NAME[#]：用来指定模块的名称。如果 DKMS模块包中包含多个要

安装的模块时，则必须对所有模块编写此选项。这个选项内容不需要包含.o或者.ko信

息。需要注意的是选项 BUILT_MODULE_NAME，BUILT_MODULE_LOCATION，

DEST_MODULE_NAME以及 DEST_MODULE_LOCATION的编号（也就是#）必须

保持一致，且必须从 0开始（如 BUILT_MODULE_NAME[0]="qla2200"

BUILT_MODULE_NAME[1]="qla2300"）；

 BUILT_MODULE_LOCATION[#]=这个选项是告诉 DKMS编译后的模块放在哪个路

径。设置此参数时，需要根据驱动源码的目录结构来设置，应该设置为被编译驱动模块.o

文件所在的目录，此目录路径是相对于 dkms.conf 所在目录的相对路径（如

helloworld目录下存在 dkms.conf，Makefile，src目录。src目录下为 helloworld.c

及Makefile文件，那么 BUILT_MODULE_NAME[0]=src）。如果未设置，DKMS会

在源文件的根目录下查找你的#号模块。请注意，对于 dkms包中的每个模块，#的数

值 必 须 与 BUILT_MODULE_NAME 、 BUILT_MODULE_LOCATION 、

DEST_MODULE_NAME和 DEST_MODULE_LOCATION中的每一个相同，并且编号

应 从 0 开 始 （ 例 如 BUILT_MODULE_LOCATION[0]= “ some/dir/ ”

BUILT_MODULE_LOCATION[1]=“other/dir/”）;如若指定此选项，ko文件存放到

/var/lib/dkms/MODULE-NAME/MODULE-VERSION/`uname

-r`/ARCH/module/MODULE-NAME.ko；

 DEST_MODULE_NAME[#]：此指令可用于指定应安装的模块的名称。这将把模块从

BUILT_module_NAME[#]重命名为 DEST_module_NAME[#]。此指令不应明确包
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含任何尾随的“.o”或“.ko”。如果未设置，则假定其值与 BUILT_MODULE_NAME[#]

相同。请注意，对于 dkms包内的每个模块，#的数值必须与 BUILT_module_NAME

中的每个模块相同，BUILT_MODULE_LOCATION、DEST_MODULE_NAME 和

DEST_MODULE_LOCATION，编号应从0开始（例如，DEST_MMODULE_NAME[0]=

“qla2200_6x”DEST_MOULE_NAME[1]=“qla300_6x”）。

 DEST_MODULE_LOCATION[#]：此指令指定模块编译后应安装到的目标位置，设置

的路径是/lib/modules/$(uname -r)/kernel/目录的相对路径，且路径后面必须加上/，

如设置 DEST_MODULE_LOCATION[0]=/drivers/scsi/，则表示 0号模块安装到

/lib/modules/$(uname -r)/kernel/drivers/scsi/目录下。如果未设置，则默认为

/lib/modules/$(uname -r)/updates/目录下。请注意，对于 dkms包内的每个模块，

#的数值必须与 BUILT_MODULE_NAME中的每个模块相同，

BUILT_MODULE_LOCATION，DEST_MODULE_NAME 以及

DEST_MODULE_LOCATION 的编号必须从 0开始 (比如，

DEST_MODULE_LOCATION[0]="/kernel/drivers/something/"

DEST_MODULE_LOCATION[1]="/kernel/drivers/other/")；

3 dkms使用实例

3.1 安装 dkms包

在使用 dkms 构建模块前，需保证系统内已安装 dkms 包及目标版本内核头文件

linux-headers相关包。

sudo apt-get install dkms

sudo apt-get install linux-headers-VERSION linux-headers-VERSION-generic

3.2 准备源码

3.2.1 新研项目源码

本实例构建 helloworld模块，源码目录为 helloworld-1.2，目录内有 helloworld.c

及Makefile文件，相关文件代码见下 helloworld.c：

//helloworld.c
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#include <linux/kernel.h>

#include <linux/module.h>

//内核模块初始化函数

static int __init hello_init(void)

{

printk(KERN_INFO "DKMS-Hello World enter\n");

return 0;

}

//内核模块退出函数

static void __exit hello_exit(void)

{

printk(KERN_INFO "DKMS-Hello World exit\n");

}

module_init(hello_init);

module_exit(hello_exit);

MODULE_LICENSE("GPL");

Makefile文件

obj-m := helloworld.o

all:

make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules

clean:

make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean

接下来我们需要准备 dkms.conf文件并放到 helloworld-1.2目录下，dkms.conf

文件内容见下：

PACKAGE_NAME=“helloworld”

PACKAGE_VERSION="1.2"

CLEAN="makeclean"

MAKE[0]="makeall KVERSION=$kernelver"
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BUILT_MODULE_NAME[0]="helloworld"

DEST_MODULE_LOCATION[0]="/updates"

AUTOINSTALL="yes"

准备好以上文件后，将 helloworld-1.2目录拷贝至/usr/src/目录下。

3.2.2 已有项目源码

本示例在某网卡厂商（下称 X 网卡）已有驱动源码基础上，新增 dkms.conf，

Makefile文件。

以 X网卡驱动 XXX_1.1.13版本为例，原有源码目录结构见下（目录结构中涉及到

网卡名称已用 XXX替代，并隐去部分目录和文件）：

kylin@kylin-pc:~/XXX_1.1.13$ tree

.

├── common

│ ├── kcompat.c

│ ├── XXX_api.c

│ ├── XXX_common.c

│ ├── XXX_debugfs.c

│ ├── XXX_macsec.c

│ ├── XXX_param.c

│ ├── XXX_procfs.c

│ ├── XXX_ptp.c

│ ├── XXX_sriov.c

│ ├── XXX_sysfs.c

│ └── XXX_westlake.c

├── include

│ ├── kcompat_defs.h

│ ├── kcompat_gcc.h

│ ├── kcompat.h

│ ├── kcompat_impl.h

│ ├── kcompat_openeuler_defs.h
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│ ├── kcompat_oracle_defs.h

│ ├── kcompat_overflow.h

│ ├── kcompat_rhel_defs.h

│ ├── kcompat_sles_defs.h

│ ├── kcompat_std_defs.h

│ ├── kcompat_ubuntu_defs.h

│ ├── XXX_api.h

│ ├── XXX_common.h

│ ├── XXX_debug.h

│ ├── XXX.h

│ ├── XXX_macsec.h

│ ├── XXX_macsec_struct.h

│ ├── XXX_osdep2.h

│ ├── XXX_osdep.h

│ ├── XXX_register.h

│ ├── XXX_sriov.h

│ ├── XXX_type.h

│ └── XXX_westlake.h

├── script

│ └── XXX_xelmem

│ ├── dump_phy.sh

│ ├── Makefile

│ ├── run.sh

│ └── XXX_xelmem.c

└── sdk

├── common.mk

├── Makefile

├── XXX_ethtool.c

├── XXX_lib.c
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├── XXX_main.c

├── XXX_txrx_common.h

├── XXX_version.h

└── XXX_xsk.c

6 directories, 48 files

在 XXX_1.1.13目录下新增 dkms.conf文件，由于 XXX编译目录在 sdk目录，故

BUILT_MODULE_LOCATION[0]="sdk"，详细内容参考如下：

PACKAGE_NAME="XXX"

PACKAGE_VERSION="1.1.13"

AUTOINSTALL="yes"

BUILD_EXCLUSIVE_KERNEL="^5.4.*|^5.10.*"

BUILT_MODULE_NAME[0]="XXX"

BUILT_MODULE_LOCATION[0]="sdk"

DEST_MODULE_LOCATION[0]="/updates/drivers/net/ethernet/XXX/XXX"

# Find out how many CPU cores can be use if we pass appropriate -j

option to make.

# DKMS could use all cores on multicore systems to build the kernel

module.

num_cpu_cores()

{

if [ -x /usr/bin/nproc ]; then

nproc

else

echo "1"

fi

}

MAKE[0]="unset KERNELRELEASE;make -j$(num_cpu_cores)"

【注】上述 dkms.conf文件中使用 XXX替代了网卡名称。
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继续在 XXX_1.1.13目录下新增Makefile文件，此 Makefile文件调用 sdk目录下

的Makefile文件并进行后续构建，参考内容见下：

SDK_DIR := sdk

all:

@echo "Building in $(SDK_DIR) $(MAKE)..."

$(MAKE) -C $(SDK_DIR)

clean:

@echo "Cleaning in $(SDK_DIR)..."

$(MAKE) -C $(SDK_DIR) clean

3.3 使用 dkms管理 helloworld模块

3.3.1 添加代码

将源代码添加到 dkms：

sudo dkms add helloworld/1.2

或者

sudo dkms add -m helloworld -v 1.2

以上两种命令模式执行效果相同，下同，后不再赘述。

kylin@kylin-pc:~$ sudo dkms add helloworld/1.2

Creating symlink /var/lib/dkms/helloworld/1.2/source ->

/usr/src/helloworld-1.2

DKMS: add completed.

3.3.2 查看状态

查看 helloworld模块状态。

kylin@kylin-pc:~$ dkms status

helloworld, 1.2: added

3.3.3 编译

编译 helloworld模块

kylin@kylin-pc:~$ sudo dkms build -m helloworld -v 1.2

Kernel preparation unnecessary for this kernel. Skipping...
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Building module:

cleaning build area...(bad exit status: 127)

make -j4 KERNELRELEASE=5.4.18-110-genericall

KVERSION=5.4.18-110-generic...

Signing module:

-

/var/lib/dkms/helloworld/1.2/5.4.18-110-generic/x86_64/module/helloworld.ko

Secure Boot not enabled on this system.

cleaning build area...(bad exit status: 127)

DKMS: build completed.

3.3.4 安装

安装 helloworld模块

kylin@kylin-pc:~$ sudo dkms install helloworld/1.2

helloworld.ko:

Running module version sanity check.

- Original module

- No original module exists within this kernel

- Installation

- Installing to /lib/modules/5.4.18-110-generic/updates/

depmod...

DKMS: install completed.

3.3.5 卸载

卸载 helloworld模块

ylin@kylin-pc:~$ sudo dkms uninstall helloworld/1.2

-------- Uninstall Beginning --------

Module: helloworld

Version: 1.2

Kernel: 5.4.18-110-generic (x86_64)
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-------------------------------------

Status: Before uninstall, this module version was ACTIVE on this kernel.

helloworld.ko:

- Uninstallation

- Deleting from: /lib/modules/5.4.18-110-generic/updates/

- Original module

- No original module was found for this module on this kernel.

- Use the dkms install command to reinstall any previous module

version.

depmod...

DKMS: uninstall completed.

3.3.6 删除

删除 helloworld模块

kylin@kylin-pc:~$ sudo dkms remove helloworld/1.2 --all

-------- Uninstall Beginning --------

Module: helloworld

Version: 1.2

Kernel: 5.4.18-110-generic (x86_64)

-------------------------------------

Status: This module version was INACTIVE for this kernel.

depmod...

DKMS: uninstall completed.

------------------------------

Deleting module version: 1.2

completely from the DKMS tree.

------------------------------

Done.
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3.4 使用 dkms将源码编译成 deb包

安装依赖包

sudo apt-get install dh-make libdigest-md5-file-perl

制作 deb包

kylin@kylin-pc:~$ sudo dkms mkdeb helloworld/1.2

或

kylin@kylin-pc:~$ sudo dkms mkdeb helloworld/1.2

Using /etc/dkms/template-dkms-mkdeb

copying template...

..........

DKMS: mkdeb completed.

Moving built files to /var/lib/dkms/helloworld/1.2/deb...

Cleaning up temporary files...

查看打包成 deb的 helloworld模块包

kylin@kylin-pc:/var/lib/dkms/helloworld/1.2/deb$ ls

helloworld-dkms_1.2_amd64.deb

制作好的 deb包在/var/lib/dkms/helloworld/1.2/deb/下。

【注意】使用 dkms mkdeb命令打包需确保 helloworld已添加到 dkms树。

3.5 dkms驱动包验证

3.5.1 安装验证

安装 dkms驱动 deb包:

kylin@kylin-pc:~$ sudo dpkg -i helloworld-dkms_1.2_amd64.deb

正在选中未选择的软件包 helloworld-dkms。

(正在读取数据库 ... 系统当前共安装有 207945 个文件和目录。)

准备解压 helloworld-dkms_1.2_amd64.deb ...

正在解压 helloworld-dkms (1.2) ...

正在设置 helloworld-dkms (1.2) ...
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Loading new helloworld-1.2 DKMS files...

Building for 5.4.18-116-generic

Building for architecture x86_64

Building initial module for 5.4.18-116-generic

Secure Boot not enabled on this system.

..........................

depmod....

DKMS: install completed.

【注】篇幅限制，省略部分打印信息。

查看安装后驱动状态

kylin@kylin-pc:~$ dkms status | grep helloworld

helloworld, 1.2, 5.4.18-116-generic, x86_64: installed

记载 helloworld模块并查看内核打印信息

kylin@kylin-pc:~$ sudo modprobe helloworld

kylin@kylin-pc:~$ lsmod | grep helloworld

helloworld 16384 0

kylin@kylin-pc:~$ dmesg

[ 1870.569029] DKMS-Hello World enter

3.5.2 卸载验证

卸载 dkms驱动

kylin@kylin-pc:~$ sudo dpkg -P helloworld-dkms

(正在读取数据库 ... 系统当前共安装有 207951 个文件和目录。)

正在卸载 helloworld-dkms (1.2) ...

-------- Uninstall Beginning --------

Module: helloworld

Version: 1.2

Kernel: 5.4.18-116-generic (x86_64)

...............

depmod...
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DKMS: uninstall completed.

------------------------------

Deleting module version: 1.2

completely from the DKMS tree.

------------------------------

Done.

【注】篇幅限制，省略部分打印信息。

查看卸载 deb包后的 dkms状态

kylin@kylin-pc:~$ dkms status | grep helloworld

执行上述命令无打印信息。

查看卸载 deb包后 dmesg打印信息

kylin@kylin-pc:~$ dmesg

..........

[ 2124.812349] DKMS-Hello World exit

【注】篇幅限制，省略部分打印信息。

3.5.3 内核升级验证

本实例实验环境原有内核版本为 5.4.18-116，升级的内核版本为 5.4.18-122。安

装 5.4.18-122内核相关包：

kylin@kylin-pc:/media/kylin/kylin/内核$ sudo dpkg -i *.deb

输入密码

正在选中未选择的软件包 linux-headers-5.4.18-122。

(正在读取数据库 ... 系统当前共安装有 207951 个文件和目录。)

准备解压 linux-headers-5.4.18-122_5.4.18-122.111_all.deb ...

正在解压 linux-headers-5.4.18-122 (5.4.18-122.111) ...

正在选中未选择的软件包 linux-headers-5.4.18-122-generic。

...........

正在设置 linux-headers-5.4.18-122-generic (5.4.18-122.111) ...

/etc/kernel/header_postinst.d/dkms:
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* dkms: running auto installation service for kernel 5.4.18-122-generic

Kernel preparation unnecessary for this kernel. Skipping...

Running the pre_build script:

checking for a BSD-compatible install... /bin/install -c

...........

Building module:

cleaning build area...(bad exit status: 127)

make -j4 KERNELRELEASE=5.4.18-122-genericall

KVERSION=5.4.18-122-generic...

Signing module:

-

/var/lib/dkms/helloworld/1.2/5.4.18-122-generic/x86_64/module/helloworld.ko

Secure Boot not enabled on this system.

cleaning build area...(bad exit status: 127)

DKMS: build completed.

helloworld.ko:

Running module version sanity check.

- Original module

- No original module exists within this kernel

- Installation

- Installing to /lib/modules/5.4.18-122-generic/updates/

depmod...
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DKMS: install completed.

..........

正在生成 grub 配置文件 ...

找到主题：/usr/share/grub/themes/UKUI/theme.txt

找到 Linux 镜像：/boot/vmlinuz-5.4.18-122-generic

找到 initrd 镜像：/boot/initrd.img-5.4.18-122-generic

找到 Linux 镜像：/boot/vmlinuz-5.4.18-116-generic

找到 initrd 镜像：/boot/initrd.img-5.4.18-116-generic

找到 initrd 镜像：/boot/initrd.img-5.4.18-122-generic

完成

【注】篇幅限制，省略部分安装打印信息。

重启系统后查看 dkms驱动包情况

kylin@kylin-pc:~/桌面$ dkms status

amdgpu, 5.13.20.5.1-1395274, 5.4.18-116-generic, amd64: installed

amdgpu, 5.13.20.5.1-1395274, 5.4.18-116-generic, x86_64: installed

(original_module exists)

..........

helloworld, 1.2, 5.4.18-116-generic, x86_64: installed

helloworld, 1.2, 5.4.18-122-generic, x86_64: installed

netflow_info, 1.0, 5.4.18-116-generic, x86_64: installed

netflow_info, 1.0, 5.4.18-122-generic, x86_64: installed

netflow_payload, 1.0, 5.4.18-116-generic, x86_64: installed

netflow_payload, 1.0, 5.4.18-122-generic, x86_64: installed

..........

重启系统，切换为 5.4.18-122内核后加载 helloworld模块并查看打印信息：

kylin@kylin-pc:~$ uname -r

5.4.18-122-generic

kylin@kylin-pc:~$ sudo modprobe helloworld

kylin@kylin-pc:~$ lsmod | grep helloworld
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helloworld 16384 0

kylin@kylin-pc:~$ dmesg

[ 1870.569029] DKMS-Hello World enter
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