
银河麒麟桌面操作系统 DKMS包

制作流程及说明

编写人： 易腊梅 编写日期： 2024-10-15

审核人： 审核日期：

批准人： 批准日期：

麒麟软件有限公司

生态与技术服务中心

2024年 10月 15日

版本说明

版本号 版本说明 作者 日期 变更内容

V1.0 首次发布 易腊梅 2024-10-15 首次创建

V1.1 修改 易腊梅 2025-1-9 添加 3.2.2

目录

1 DKMS功能 ...1
2 DKMS包名规范 ... 1
2.1 依赖 ...1
2.2 源代码构建位置 .. 1
2.3 DKMS命令 ...1

2.3.1 ACTIONS ..2
2.3.2 OPTIONS ..3

2.4 dkms.conf配置文件 ...4
3 dkms使用实例 .. 6
3.1 安装 dkms包 ...6
3.2 准备源码 .. 6
3.3 使用 dkms管理 helloworld模块 .. 11

3.3.1 添加代码 .. 11
3.3.2 查看状态 .. 11
3.3.3 编译 ...11
3.3.4 安装 ...12
3.3.5 卸载 ...12
3.3.6 删除 ...13

3.4 使用 dkms将源码编译成 deb包 ... 14
3.5 dkms驱动包验证 ..14

3.5.1 安装验证 .. 14
3.5.2 卸载验证 .. 15
3.5.3 内核升级验证 ..16

1

1 DKMS功能

DKMS全称是 DynamicKernel ModuleSupport，是用来生成 Linux 内核模块的

一个框架，它可以帮我们维护内核外的驱动程序，这种模块的源代码一般不在 Linux 内核

源代码树中。当新的内核安装时，DKMS 支持的内核模块会自动重建。

2 DKMS包名规范

dkms软件包的命名规范需遵循《银河麒麟桌面操作系统 V10-DEB包打包规范》，

在 此 基 础 上 DKMS 包 的 命 名 方 式 是 需 要 在 源 码 包 名 加 "-dkms" 后 缀 ， 即

packagename-dkms。

全名格式：packagename-dkms_version_platform.deb

长度要求：包全名长度最大为 255 个字符。

packagename应包含驱动模块的设备类型、厂商、驱动及型号信息，命名规范为：

{设备类型}-driver-厂商-{型号或系列}，示例如 net-driver-rtk-811B。如果该驱动包适

用于此厂商该设备类型的所有型号，则命名规范建议为 :{设备类型}-driver-厂商

-{common}，示例如 net-driver-rtk-common。

2.1 依赖

依赖的包应该是原来软件包的基础上，加上 dkms 包及目标版本内核头文件

linux-headers。

2.2 源代码构建位置

DKMS 要求我们的代码目录必须以-的格式命名，构建模块所需源代码需要放在

/usr/src/MODULE_NAME-MODULE_VERSION目录下，此目录是 DKMS构建模块时使

用的默认目录。

2.3 DKMS命令

dkms使用命令格式

dkms [action] [options] [module/module-version] [/path/to/source-tree]

[/path/to/tarball.tar] [/path/to/driver.rpm]

https://archlinux.org/packages/?name=dkms

2

2.3.1 ACTIONS
 查看 DKMS模块状态

dkms status [module/module-version] [-k kernel/arch]

查看 DKMS模块状态，如若未指定module等信息，则默认显示所有 dkms模块

状态，模块状态有 added,built及 installed三种状态。

 添加 DKMS模块

dkms add [module/module-version] [/path/to/source-tree] [/path/to/tarball.tar]

 移除 DKMS模块

dkms remove [module/module-version] [-k kernel/arch] [--all]

--all 参数是将指定模块从所有内核中移除，-k <kernel-version>参数移除与指定

内核版本匹配的模块。

 编译 DKMS模块

dkms build [module/module-version] [-k kernel/arch]

为指定内核编译module/version，如若未指定-k选项，则默认为当前运行的的内

核和架构。

 安装 DKMS模块

dkms install [module/module-version] [-k kernel/arch] [/path/to/driver.rpm]

安装指定模块，如果未指定内核和架构，则默认安装到当前正在运行的内核中。如

果当前模块未添加或被编译，使用 install命令，dkms则会去尝试添加和编译，如果添加

和编译成功，dkms则会安装此模块。

 重新构建内核模块

dkms autoinstall

为当前内核重新构建所有的 dkms模块。

 卸载 DKMS模块

dkms uninstall [module/module-version] [-k kernel/arch]

从指定内核中卸载已安装的模块，如果未指定-k参数，则默认卸载在当前运行内核

上卸载此模块。卸载的模块仍然处于 build 状态，如果需要完全删除此驱动，则需使用

remove命令删除。

 使用 DKMS制作模块 deb包

3

dkms mkdeb [module/module-version] [-k kernel/arch]

此 命 令 是 为 指 定 版 本 的 模 块 创 建 deb 二 进 制 包 。 它 使 用

/etc/dkms/template-dkms-mkdeb中的模板 debian目录作为包的基础。如果 DKMS

找到一个名为/usr/src/<module>-<module-version>/<module>-dkms-mkdeb 的

文件，它将使用该文件夹。

 创建 DKMS模块源代码压缩包

dkms mktarball [module/module-version] [-k kernel/arch] [--archive

/path/to/tarball.tar] [--source-only] [--binaries-only]

此命令将会创建指定内核模块的压缩包，包括源码及编译后的模块。可以指定一个

内核来进行压缩，也可以针对多个内核来对模块进行压缩，如 -k kernel1/arch1 -k

kernel2/arch2。可以使用--archive参数来指定要打包到压缩包的文件。如果想生成只含

二进制文件的压缩包，则使用--binaries-only。如果想生成只包含源代码的压缩文件，则

使用--source-only。【注意】若只压缩二进制包则需在 build之后才能使用此命令创建压

缩包。

 使用 DKMS加载 tarball

dkms ldtarball [/path/to/tarball.tar] [--force]

此命令可以加载mktarball命令打包的压缩包到 DKMS树，加载后可以使用 dkms

tatus命令查看到对应的模块，此模块处于 built状态。如果加载的模块文件目录已存在，

则会发出警告并终止加载。如需覆盖，可使用--force。

2.3.2 OPTIONS
常用 options：

参数 说明

-m <module>/<module-version> 指定模块名字及版本

-v <module-version> 指定模块版本，只能跟-m搭配使用（且-m未指

定模块版本），如-m hello -v 0.1

-k <kernel-version>/<arch> 指定内核版本及架构，可使用多个-k参数来指定

多内核及架构；

4

-a，--arch 指定系统架构，与-k使用，如未指定则默认使用

当前运行系统的架构。可使用多个-a参数指定多

个架构，但每个-a参数均需与-k配套使用，即-个

-a参数对应一个-k参数，系统自动将第一个-a参

数与第一个-k参数匹配在一起，以此类推；

-V, --version 打印当前已安装 dkms版本并退出

2.4 dkms.conf配置文件

在软件源码目录下，要包含一个 dkms.conf 配置文件，告诉 DKMS 如何编译。dkms.conf

配置文件常用参数见下：

 PACKAGE_NAME ：此选项指定模块名称，此名称与 dkms添加，编译等命令时使用

的-m后的名称保持一致。此选项为 dkms.conf的必填项；

 PACKAGE_VERSION ：指定模块的软件版本，此选项为 dkms.conf的必填项；

 CLEAN：用于指定用于在构建模块前后进行清理的命令，如未设置，则默认为”make

clean”命令；

 PATCH[#]：使用 PATCH数组来指定补丁，每个 PATCH都需要指定要应用的补丁文

件 名 。 且 所 有 的 补 丁 包 都 需 要 放 置 在 源 目 录 的 补 丁 子 目 录

/usr/src/<module>-<module-version>/patches/ 。如果想使用指定的 patch，

则需要用 PATCH_MATCH[#]配套使用，PATCH_MATCH[#]中指定相应的正则表达

式，如果正则表达式与当前构建模块的内核匹配，则提醒 dkms仅使用该 PATCH[#]。

如 若 没 有 任 何 补 丁 被 成 功 应 用 ， 则 停 止 编 译 ， 编 译 失 败 信 息 会 记 录 到

/var/lib/dkms/<module>/<module-version>/build/中；

 PATCH_MATCH[#]：参照 PATCH[#]指令说明。如只想在某些情况下应用补丁，则需

要在编译之前使用 PATCH_MATCH[#]来指定正则表达式，该正则表达式指定与此

patch匹配的内核，如当前内核与此匹配，则应用这个补丁；

 AUTOINSTALL：当设置为“yes”时，则/etc/rc.d/init.d/dkms_autoinstaller服务

会自动尝试在启动的内核上安装此模块。dkms_autoinstaller服务是在系统引导时检

查当前内核版本和已安装的 DKMS模块，如果发现有模块需要更新，则会触发重新编

译和安装操作，确保系统在内核更新后仍然能够正常使用这些模块。需要了解更多，可

5

阅读 dkms_autoinstaller说明；

 MAKE[0]：用来设定编译的命令，默认的make命令放在MAKE[0]中。MAKE[#]数

组 中 的 其 他 编 译 命 令 只 有 在 与 MAKE_MATCH[#]匹 配 时 才 会 使 用 。 如 果

MAKE_MATCH[#]中没有为任何 MAKE[#](#>0)设置正则表达式，则忽略该

MAKE[#]指令。如果多个 MAKE_MATCH指令与正在构建的内核匹配，则最后一个匹

配的 MAKE[#]将用于构建模块。如果没有指定 MAKE 指令，或者如果没有

MAKE_MATCH与正在构建的内核匹配，DKMS将尝试使用通用的 MAKE命令来构建

模块。一般情况下是不用设定的；

 MAKE_MATCH[#]：请参阅 MAKE[#]说明。此数组指定正则表达式，当与正在构建

的内核匹配时，则使用执行对应 MAKE[#]指令来构建模块；

 BUILT_MODULE_NAME[#]：用来指定模块的名称。如果 DKMS模块包中包含多个要

安装的模块时，则必须对所有模块编写此选项。这个选项内容不需要包含.o或者.ko信

息。需要注意的是选项 BUILT_MODULE_NAME，BUILT_MODULE_LOCATION，

DEST_MODULE_NAME以及 DEST_MODULE_LOCATION的编号（也就是#）必须

保持一致，且必须从 0开始（如 BUILT_MODULE_NAME[0]="qla2200"

BUILT_MODULE_NAME[1]="qla2300"）；

 BUILT_MODULE_LOCATION[#]=这个选项是告诉 DKMS编译后的模块放在哪个路

径。设置此参数时，需要根据驱动源码的目录结构来设置，应该设置为被编译驱动模块.o

文件所在的目录，此目录路径是相对于 dkms.conf 所在目录的相对路径（如

helloworld目录下存在 dkms.conf，Makefile，src目录。src目录下为 helloworld.c

及Makefile文件，那么 BUILT_MODULE_NAME[0]=src）。如果未设置，DKMS会

在源文件的根目录下查找你的#号模块。请注意，对于 dkms包中的每个模块，#的数

值 必 须 与 BUILT_MODULE_NAME 、 BUILT_MODULE_LOCATION 、

DEST_MODULE_NAME和 DEST_MODULE_LOCATION中的每一个相同，并且编号

应 从 0 开 始 （ 例 如 BUILT_MODULE_LOCATION[0]= “ some/dir/ ”

BUILT_MODULE_LOCATION[1]=“other/dir/”）;如若指定此选项，ko文件存放到

/var/lib/dkms/MODULE-NAME/MODULE-VERSION/`uname

-r`/ARCH/module/MODULE-NAME.ko；

 DEST_MODULE_NAME[#]：此指令可用于指定应安装的模块的名称。这将把模块从

BUILT_module_NAME[#]重命名为 DEST_module_NAME[#]。此指令不应明确包

6

含任何尾随的“.o”或“.ko”。如果未设置，则假定其值与 BUILT_MODULE_NAME[#]

相同。请注意，对于 dkms包内的每个模块，#的数值必须与 BUILT_module_NAME

中的每个模块相同，BUILT_MODULE_LOCATION、DEST_MODULE_NAME 和

DEST_MODULE_LOCATION，编号应从0开始（例如，DEST_MMODULE_NAME[0]=

“qla2200_6x”DEST_MOULE_NAME[1]=“qla300_6x”）。

 DEST_MODULE_LOCATION[#]：此指令指定模块编译后应安装到的目标位置，设置

的路径是/lib/modules/$(uname -r)/kernel/目录的相对路径，且路径后面必须加上/，

如设置 DEST_MODULE_LOCATION[0]=/drivers/scsi/，则表示 0号模块安装到

/lib/modules/$(uname -r)/kernel/drivers/scsi/目录下。如果未设置，则默认为

/lib/modules/$(uname -r)/updates/目录下。请注意，对于 dkms包内的每个模块，

#的数值必须与 BUILT_MODULE_NAME中的每个模块相同，

BUILT_MODULE_LOCATION，DEST_MODULE_NAME 以及

DEST_MODULE_LOCATION 的编号必须从 0开始 (比如，

DEST_MODULE_LOCATION[0]="/kernel/drivers/something/"

DEST_MODULE_LOCATION[1]="/kernel/drivers/other/")；

3 dkms使用实例

3.1 安装 dkms包

在使用 dkms 构建模块前，需保证系统内已安装 dkms 包及目标版本内核头文件

linux-headers相关包。

sudo apt-get install dkms

sudo apt-get install linux-headers-VERSION linux-headers-VERSION-generic

3.2 准备源码

3.2.1 新研项目源码

本实例构建 helloworld模块，源码目录为 helloworld-1.2，目录内有 helloworld.c

及Makefile文件，相关文件代码见下 helloworld.c：

//helloworld.c

7

#include <linux/kernel.h>

#include <linux/module.h>

//内核模块初始化函数

static int __init hello_init(void)

{

printk(KERN_INFO "DKMS-Hello World enter\n");

return 0;

}

//内核模块退出函数

static void __exit hello_exit(void)

{

printk(KERN_INFO "DKMS-Hello World exit\n");

}

module_init(hello_init);

module_exit(hello_exit);

MODULE_LICENSE("GPL");

Makefile文件

obj-m := helloworld.o

all:

make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules

clean:

make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean

接下来我们需要准备 dkms.conf文件并放到 helloworld-1.2目录下，dkms.conf

文件内容见下：

PACKAGE_NAME=“helloworld”

PACKAGE_VERSION="1.2"

CLEAN="makeclean"

MAKE[0]="makeall KVERSION=$kernelver"

8

BUILT_MODULE_NAME[0]="helloworld"

DEST_MODULE_LOCATION[0]="/updates"

AUTOINSTALL="yes"

准备好以上文件后，将 helloworld-1.2目录拷贝至/usr/src/目录下。

3.2.2 已有项目源码

本示例在某网卡厂商（下称 X 网卡）已有驱动源码基础上，新增 dkms.conf，

Makefile文件。

以 X网卡驱动 XXX_1.1.13版本为例，原有源码目录结构见下（目录结构中涉及到

网卡名称已用 XXX替代，并隐去部分目录和文件）：

kylin@kylin-pc:~/XXX_1.1.13$ tree

.

├── common

│ ├── kcompat.c

│ ├── XXX_api.c

│ ├── XXX_common.c

│ ├── XXX_debugfs.c

│ ├── XXX_macsec.c

│ ├── XXX_param.c

│ ├── XXX_procfs.c

│ ├── XXX_ptp.c

│ ├── XXX_sriov.c

│ ├── XXX_sysfs.c

│ └── XXX_westlake.c

├── include

│ ├── kcompat_defs.h

│ ├── kcompat_gcc.h

│ ├── kcompat.h

│ ├── kcompat_impl.h

│ ├── kcompat_openeuler_defs.h

9

│ ├── kcompat_oracle_defs.h

│ ├── kcompat_overflow.h

│ ├── kcompat_rhel_defs.h

│ ├── kcompat_sles_defs.h

│ ├── kcompat_std_defs.h

│ ├── kcompat_ubuntu_defs.h

│ ├── XXX_api.h

│ ├── XXX_common.h

│ ├── XXX_debug.h

│ ├── XXX.h

│ ├── XXX_macsec.h

│ ├── XXX_macsec_struct.h

│ ├── XXX_osdep2.h

│ ├── XXX_osdep.h

│ ├── XXX_register.h

│ ├── XXX_sriov.h

│ ├── XXX_type.h

│ └── XXX_westlake.h

├── script

│ └── XXX_xelmem

│ ├── dump_phy.sh

│ ├── Makefile

│ ├── run.sh

│ └── XXX_xelmem.c

└── sdk

├── common.mk

├── Makefile

├── XXX_ethtool.c

├── XXX_lib.c

10

├── XXX_main.c

├── XXX_txrx_common.h

├── XXX_version.h

└── XXX_xsk.c

6 directories, 48 files

在 XXX_1.1.13目录下新增 dkms.conf文件，由于 XXX编译目录在 sdk目录，故

BUILT_MODULE_LOCATION[0]="sdk"，详细内容参考如下：

PACKAGE_NAME="XXX"

PACKAGE_VERSION="1.1.13"

AUTOINSTALL="yes"

BUILD_EXCLUSIVE_KERNEL="^5.4.*|^5.10.*"

BUILT_MODULE_NAME[0]="XXX"

BUILT_MODULE_LOCATION[0]="sdk"

DEST_MODULE_LOCATION[0]="/updates/drivers/net/ethernet/XXX/XXX"

Find out how many CPU cores can be use if we pass appropriate -j

option to make.

DKMS could use all cores on multicore systems to build the kernel

module.

num_cpu_cores()

{

if [-x /usr/bin/nproc]; then

nproc

else

echo "1"

fi

}

MAKE[0]="unset KERNELRELEASE;make -j$(num_cpu_cores)"

【注】上述 dkms.conf文件中使用 XXX替代了网卡名称。

11

继续在 XXX_1.1.13目录下新增Makefile文件，此 Makefile文件调用 sdk目录下

的Makefile文件并进行后续构建，参考内容见下：

SDK_DIR := sdk

all:

@echo "Building in $(SDK_DIR) $(MAKE)..."

$(MAKE) -C $(SDK_DIR)

clean:

@echo "Cleaning in $(SDK_DIR)..."

$(MAKE) -C $(SDK_DIR) clean

3.3 使用 dkms管理 helloworld模块

3.3.1 添加代码

将源代码添加到 dkms：

sudo dkms add helloworld/1.2

或者

sudo dkms add -m helloworld -v 1.2

以上两种命令模式执行效果相同，下同，后不再赘述。

kylin@kylin-pc:~$ sudo dkms add helloworld/1.2

Creating symlink /var/lib/dkms/helloworld/1.2/source ->

/usr/src/helloworld-1.2

DKMS: add completed.

3.3.2 查看状态

查看 helloworld模块状态。

kylin@kylin-pc:~$ dkms status

helloworld, 1.2: added

3.3.3 编译

编译 helloworld模块

kylin@kylin-pc:~$ sudo dkms build -m helloworld -v 1.2

Kernel preparation unnecessary for this kernel. Skipping...

12

Building module:

cleaning build area...(bad exit status: 127)

make -j4 KERNELRELEASE=5.4.18-110-genericall

KVERSION=5.4.18-110-generic...

Signing module:

-

/var/lib/dkms/helloworld/1.2/5.4.18-110-generic/x86_64/module/helloworld.ko

Secure Boot not enabled on this system.

cleaning build area...(bad exit status: 127)

DKMS: build completed.

3.3.4 安装

安装 helloworld模块

kylin@kylin-pc:~$ sudo dkms install helloworld/1.2

helloworld.ko:

Running module version sanity check.

- Original module

- No original module exists within this kernel

- Installation

- Installing to /lib/modules/5.4.18-110-generic/updates/

depmod...

DKMS: install completed.

3.3.5 卸载

卸载 helloworld模块

ylin@kylin-pc:~$ sudo dkms uninstall helloworld/1.2

-------- Uninstall Beginning --------

Module: helloworld

Version: 1.2

Kernel: 5.4.18-110-generic (x86_64)

13

Status: Before uninstall, this module version was ACTIVE on this kernel.

helloworld.ko:

- Uninstallation

- Deleting from: /lib/modules/5.4.18-110-generic/updates/

- Original module

- No original module was found for this module on this kernel.

- Use the dkms install command to reinstall any previous module

version.

depmod...

DKMS: uninstall completed.

3.3.6 删除

删除 helloworld模块

kylin@kylin-pc:~$ sudo dkms remove helloworld/1.2 --all

-------- Uninstall Beginning --------

Module: helloworld

Version: 1.2

Kernel: 5.4.18-110-generic (x86_64)

Status: This module version was INACTIVE for this kernel.

depmod...

DKMS: uninstall completed.

Deleting module version: 1.2

completely from the DKMS tree.

Done.

14

3.4 使用 dkms将源码编译成 deb包

安装依赖包

sudo apt-get install dh-make libdigest-md5-file-perl

制作 deb包

kylin@kylin-pc:~$ sudo dkms mkdeb helloworld/1.2

或

kylin@kylin-pc:~$ sudo dkms mkdeb helloworld/1.2

Using /etc/dkms/template-dkms-mkdeb

copying template...

..........

DKMS: mkdeb completed.

Moving built files to /var/lib/dkms/helloworld/1.2/deb...

Cleaning up temporary files...

查看打包成 deb的 helloworld模块包

kylin@kylin-pc:/var/lib/dkms/helloworld/1.2/deb$ ls

helloworld-dkms_1.2_amd64.deb

制作好的 deb包在/var/lib/dkms/helloworld/1.2/deb/下。

【注意】使用 dkms mkdeb命令打包需确保 helloworld已添加到 dkms树。

3.5 dkms驱动包验证

3.5.1 安装验证

安装 dkms驱动 deb包:

kylin@kylin-pc:~$ sudo dpkg -i helloworld-dkms_1.2_amd64.deb

正在选中未选择的软件包 helloworld-dkms。

(正在读取数据库 ... 系统当前共安装有 207945 个文件和目录。)

准备解压 helloworld-dkms_1.2_amd64.deb ...

正在解压 helloworld-dkms (1.2) ...

正在设置 helloworld-dkms (1.2) ...

15

Loading new helloworld-1.2 DKMS files...

Building for 5.4.18-116-generic

Building for architecture x86_64

Building initial module for 5.4.18-116-generic

Secure Boot not enabled on this system.

..........................

depmod....

DKMS: install completed.

【注】篇幅限制，省略部分打印信息。

查看安装后驱动状态

kylin@kylin-pc:~$ dkms status | grep helloworld

helloworld, 1.2, 5.4.18-116-generic, x86_64: installed

记载 helloworld模块并查看内核打印信息

kylin@kylin-pc:~$ sudo modprobe helloworld

kylin@kylin-pc:~$ lsmod | grep helloworld

helloworld 16384 0

kylin@kylin-pc:~$ dmesg

[1870.569029] DKMS-Hello World enter

3.5.2 卸载验证

卸载 dkms驱动

kylin@kylin-pc:~$ sudo dpkg -P helloworld-dkms

(正在读取数据库 ... 系统当前共安装有 207951 个文件和目录。)

正在卸载 helloworld-dkms (1.2) ...

-------- Uninstall Beginning --------

Module: helloworld

Version: 1.2

Kernel: 5.4.18-116-generic (x86_64)

...............

depmod...

16

DKMS: uninstall completed.

Deleting module version: 1.2

completely from the DKMS tree.

Done.

【注】篇幅限制，省略部分打印信息。

查看卸载 deb包后的 dkms状态

kylin@kylin-pc:~$ dkms status | grep helloworld

执行上述命令无打印信息。

查看卸载 deb包后 dmesg打印信息

kylin@kylin-pc:~$ dmesg

..........

[2124.812349] DKMS-Hello World exit

【注】篇幅限制，省略部分打印信息。

3.5.3 内核升级验证

本实例实验环境原有内核版本为 5.4.18-116，升级的内核版本为 5.4.18-122。安

装 5.4.18-122内核相关包：

kylin@kylin-pc:/media/kylin/kylin/内核$ sudo dpkg -i *.deb

输入密码

正在选中未选择的软件包 linux-headers-5.4.18-122。

(正在读取数据库 ... 系统当前共安装有 207951 个文件和目录。)

准备解压 linux-headers-5.4.18-122_5.4.18-122.111_all.deb ...

正在解压 linux-headers-5.4.18-122 (5.4.18-122.111) ...

正在选中未选择的软件包 linux-headers-5.4.18-122-generic。

...........

正在设置 linux-headers-5.4.18-122-generic (5.4.18-122.111) ...

/etc/kernel/header_postinst.d/dkms:

17

* dkms: running auto installation service for kernel 5.4.18-122-generic

Kernel preparation unnecessary for this kernel. Skipping...

Running the pre_build script:

checking for a BSD-compatible install... /bin/install -c

...........

Building module:

cleaning build area...(bad exit status: 127)

make -j4 KERNELRELEASE=5.4.18-122-genericall

KVERSION=5.4.18-122-generic...

Signing module:

-

/var/lib/dkms/helloworld/1.2/5.4.18-122-generic/x86_64/module/helloworld.ko

Secure Boot not enabled on this system.

cleaning build area...(bad exit status: 127)

DKMS: build completed.

helloworld.ko:

Running module version sanity check.

- Original module

- No original module exists within this kernel

- Installation

- Installing to /lib/modules/5.4.18-122-generic/updates/

depmod...

18

DKMS: install completed.

..........

正在生成 grub 配置文件 ...

找到主题：/usr/share/grub/themes/UKUI/theme.txt

找到 Linux 镜像：/boot/vmlinuz-5.4.18-122-generic

找到 initrd 镜像：/boot/initrd.img-5.4.18-122-generic

找到 Linux 镜像：/boot/vmlinuz-5.4.18-116-generic

找到 initrd 镜像：/boot/initrd.img-5.4.18-116-generic

找到 initrd 镜像：/boot/initrd.img-5.4.18-122-generic

完成

【注】篇幅限制，省略部分安装打印信息。

重启系统后查看 dkms驱动包情况

kylin@kylin-pc:~/桌面$ dkms status

amdgpu, 5.13.20.5.1-1395274, 5.4.18-116-generic, amd64: installed

amdgpu, 5.13.20.5.1-1395274, 5.4.18-116-generic, x86_64: installed

(original_module exists)

..........

helloworld, 1.2, 5.4.18-116-generic, x86_64: installed

helloworld, 1.2, 5.4.18-122-generic, x86_64: installed

netflow_info, 1.0, 5.4.18-116-generic, x86_64: installed

netflow_info, 1.0, 5.4.18-122-generic, x86_64: installed

netflow_payload, 1.0, 5.4.18-116-generic, x86_64: installed

netflow_payload, 1.0, 5.4.18-122-generic, x86_64: installed

..........

重启系统，切换为 5.4.18-122内核后加载 helloworld模块并查看打印信息：

kylin@kylin-pc:~$ uname -r

5.4.18-122-generic

kylin@kylin-pc:~$ sudo modprobe helloworld

kylin@kylin-pc:~$ lsmod | grep helloworld

19

helloworld 16384 0

kylin@kylin-pc:~$ dmesg

[1870.569029] DKMS-Hello World enter

	银河麒麟桌面操作系统DKMS包
	制作流程及说明
	版本说明
	1 DKMS功能
	2 DKMS包名规范
	2.1 依赖
	2.2 源代码构建位置
	2.3 DKMS命令
	2.3.1 ACTIONS
	2.3.2 OPTIONS

	2.4 dkms.conf配置文件

	3 dkms使用实例
	3.1 安装dkms包
	3.2 准备源码
	3.2.1 新研项目源码
	3.2.2 已有项目源码

	3.3 使用dkms管理helloworld模块
	3.3.1 添加代码
	3.3.2 查看状态
	3.3.3 编译
	3.3.4 安装
	3.3.5 卸载
	3.3.6 删除

	3.4 使用dkms将源码编译成deb包
	3.5 dkms驱动包验证
	3.5.1 安装验证
	3.5.2 卸载验证
	3.5.3 内核升级验证

