
银河麒麟桌面操作系统非 DKMS驱动

制作流程及说明

编写人： 易腊梅 编写日期： 2024-10-15

审核人： 审核日期：

批准人： 批准日期：

麒麟软件有限公司

生态与技术服务中心

2024年 10月 15日

版本说明

版本号 版本说明 作者 日期 变更内容

V1.0 首次发布 易腊梅 2024-10-15 首次创建

目录

1 非 dkms驱动范围 .. 1
2 非 dkms核外驱动包名规范 ...1
3 非 dkms核外模块编译成 deb的流程 ...1

3.1 源码编译成 ko模块 ...1
3.1.1 obj-[x]说明 ...2
3.1.2 make命令说明 ... 2

3.2 将 ko模块打包成 deb ... 2
3.2.1 DEBIAN目录说明 ..2
3.2.2 具体安装目录说明 ... 4

4 非 dkms核外驱动源码打包成 deb实例 ... 5
4.1 非 dkms核外驱动模块编译 ko ...5

4.1.1 源码准备 .. 5
4.1.2 编译 ...6

4.2 打包成 deb包 .. 6
4.2.1 打包准备 .. 6
4.2.2 打包 ...8

4.3 安装与卸载 deb包 ..8
4.3.1 安装与验证 ... 8
4.3.2 卸载与验证 ... 9

1

1 非 dkms驱动范围

非 dkms驱动包括核内及核外驱动包。核内驱动跟随内核整编，命名、打

包等规范与内核规范保持一致。本文档仅规范非 dkms核外驱动打包成 deb流

程。

2 非 dkms核外驱动包名规范

非 dkms软件包需遵循《银河麒麟桌面操作系统 V10-DEB包打包规范》。

全名格式：packagename_version_platform.deb

长度要求：包全名长度最大为 255 个字符。

packagename应包含驱动模块的设备类型、厂商、驱动及型号信息，命名规范为：

{设备类型}-driver-厂商-{型号或系列}，示例如 net-driver-rtk-811B。如果该驱动包适

用于此厂商该设备类型的所有型号，则命名规范建议为 :{设备类型}-driver-厂商

-{common}，示例如 net-driver-rtk-common。

3 非 dkms核外模块编译成 deb的流程

非 dkms驱动包有编入内核及核外编译两种编译方式。

核内编译主要是将驱动源码添加到内核后整编内核，涉及内核维护和更新，此处不

做过多介绍。接下来重点介绍核外编译驱动模块。

3.1 源码编译成 ko模块

核外编译打包成 deb包的流程包含两个步骤。首先需要将驱动编译成核外驱动，之

后再将编译好的.ko打包成 deb包。

图 1 核外驱动编译模式

如果要将驱动作为内核的外部模块编译，主要通过 Makefile中的 obj-[x]和make

modules指令来处理。

2

3.1.1 obj-[x]说明

obj-[x]用于描述需要编译的目标的属性。

 obj-y：表示将指定对象编译为内核的一部分（即静态链接），这意味着该对象将

包含在内核映像中，无法卸载或修改。通常情况下，obj-y用于编译内核的核心组

件，例如进程调度器、文件系统、网络协议栈等。

 obj-m：表示将指定对象编译为可加载模块（即动态链接），这意味着该对象将作

为单独的模块编译，并在需要时加载到内核中。通常情况下，obj-m用于编译内

核的外围组件，例如设备驱动程序、文件系统模块、网络协议栈模块等。

 obj-$(CONFIG_YOUR_DEF): 同时也可是一个变量, 例如放在 Kconfig中共用户

配置, 本质还是 obj-y和 obj-m
3.1.2 make命令说明

Makefile中编译内核模块指令为make modules ，该指令的功能是编译内核中所

有配置为模块的程序得到模块 ko文件，make modules 命令只能在内核源码顶层目录下

执行。

make modules是编译所有的内核模块，如何单独编译一个指定的模块呢？可增加

M参数，如：make -C $(KDIR) M=`pwd` modules

-C：$KDIR内核源代码所在的目录。“make”在执行时实际上会切换到指定的目

录，并在完成时切回。

-M: 选项用于指定模块源代码目录，让命令在指定的目录下查找模块源代码(pwd获

取当前目录路径)，编译生成 ko文件

modules: 参数用于指定要编译的目标是模块文件。在 Linux内核编译中，make

命令可以使用modules参数来指定只编译模块文件，而不编译整个内核。

3.2 将 ko模块打包成 deb

需要制作 package包的 deb包，则需要创建 package目录，在此目录下

有两部分主要目录：DEBIAN和软件具体安装目录（如 etc，usr，opt，lib，
tmp等）。

3.2.1 DEBIAN目录说明

DEBIAN目录下有主要文件和其他文件。

https://zhida.zhihu.com/search?content_id=228740025&content_type=Article&match_order=1&q=%E9%9D%99%E6%80%81%E9%93%BE%E6%8E%A5&zhida_source=entity
https://zhida.zhihu.com/search?content_id=228740025&content_type=Article&match_order=1&q=%E8%BF%9B%E7%A8%8B%E8%B0%83%E5%BA%A6&zhida_source=entity
https://zhida.zhihu.com/search?content_id=228740025&content_type=Article&match_order=1&q=%E7%BD%91%E7%BB%9C%E5%8D%8F%E8%AE%AE%E6%A0%88&zhida_source=entity
https://zhida.zhihu.com/search?content_id=228740025&content_type=Article&match_order=1&q=%E5%8A%A8%E6%80%81%E9%93%BE%E6%8E%A5&zhida_source=entity
https://zhida.zhihu.com/search?content_id=228740025&content_type=Article&match_order=1&q=%E7%94%A8%E6%88%B7%E9%85%8D%E7%BD%AE&zhida_source=entity
https://zhida.zhihu.com/search?content_id=228740025&content_type=Article&match_order=1&q=%E7%94%A8%E6%88%B7%E9%85%8D%E7%BD%AE&zhida_source=entity

3

 主要文件:

 control——软件包的元数据(依赖包,之类)

 rules——规定了如何构建软件包

 copyright——软件包的版权信息

 changelog——Debian 软件包的更新历史记录

 其他文件:

 兼容文件

 监测文件

 dh_install* 的保存目录（*.dirs, *.docs, *.manpages, ...）

 维护脚本（*.postinst, *.prerm, ...）

 源码/格式

 补丁（如您需要修改上游源代码）

主要文件中主要介绍 control 文件。 control 文件主要描述软件包的名称

（Package），版本（Version），Installed-Size（大小），Maintainer（打包人和联系

方式）以及描述（Description）等，是 deb包必须具备的描述性文件，以便于软件的安

装管理和索引。

表 1 control 字段说明

字段 用途 示例

Package 程序名称 中间不能有空格

Version 软件版本 1.0.0
Description 程序说明 -
Section 软件类别 utils, net, mail, text, x11
Priority 软件对应系统的重要性 required, standard,

optional, extra等；

Essential 是否是系统最基本的包 yes/no，若为 yes,则不允许卸

载（除非强制性卸载）

Architecture 软件所支持的平台架构 i386, amd64, m68k, sparc,

alpha, powerpc 等，也可写

any表示任意

4

Source 软件包的源代码名称 -
Depends 软件所依赖的其他软件包和库文件 若依赖多个软件包和库文件，采

用逗号隔开

Pre-Depends 软件安装前必须安装、配置依赖性的软

件包和库文件

常用于必须的预运行脚本需求

Recommends 推荐安装的其他软件包和库文件 -
Suggests 建议安装的其他软件包和库文件 -

 preinst文件：在 Deb包文件解包之前（即软件安装前），将会运行该脚本。可以停

止作用于待升级软件包的服务，直到软件包安装或升级完成。

 postinst文件：负责完成安装包时的配置工作。如新安装或升级的软件重启服务。软

件安装完后，执行该 Shell脚本，一般用来配置软件执行环境，必须以“#!/bin/sh”

为首行。

 prerm 文件：该脚本负责停止与软件包相关联的 daemon服务。它在删除软件包关

联文件之前执行。

 postrm文件：负责修改软件包链接或文件关联，或删除由它创建的文件。软件卸载后，

执行该 Shell脚本，一般作为清理收尾工作，必须以“#!/bin/sh”为首行。

3.2.2 具体安装目录说明

在 package目录下还有如下目录：

 usr/bin：存放可执行文件，安装完成后会在系统的/usr/bin下生成可执行文件；

 usr/share/icons：图标文件存放目录，安装后会在系统/usr/share/icons目录下

生成图标文件；

 usr/share/applications ： 存 放 桌 面 desktop 文 件 ， 安 装 后 会 在

/usr/share/applications目录下生成.desktop文件；

 lib/modules/`uname -r`/extra：存放核外 ko文件，安装后对应 deb后，系统

/lib/modules/`uname -r`/extra目录下会生成 ko文件；

 etc/modules-load.d/:存放开机自动加载 ko模块的 conf配置文件，安装后对应

deb后，系统/etc/modules-load.d目录下会生成对应 conf文件；

其他更多打包信息请参照《银河麒麟桌面操作系统 V10-DEB包打包规范》。

5

4 非 dkms核外驱动源码打包成 deb实例

4.1 非 dkms核外驱动模块编译 ko
4.1.1 源码准备

本实例构建 hello模块，以下为 hello.c源码内容：

#include <linux/init.h>

#include <linux/module.h>

static int hello_init(void)

{

printk(KERN_INFO " Hello World enter\n");

return 0;

}

static void hello_exit(void)

{

printk(KERN_INFO " Hello World exit\n ");

}

module_init(hello_init);

module_exit(hello_exit);

MODULE_AUTHOR("kylinsoft");

MODULE_LICENSE("GPL");

MODULE_DESCRIPTION("A simple Hello World Module");

MODULE_ALIAS("a test module");

准备 Makefile文件

KDIR=/lib/modules/`uname -r`/build

obj-m := hello.o

.PHONY: default clean

default:

6

make -C $(KDIR) M=`pwd` modules

clean:

make -C $(KDIR) M=`pwd` modules clean

4.1.2 编译

开始编译，执行make

kylin@kylin-pc:~/hello$ sudo make

make -C /lib/modules/`uname -r`/build M=`pwd` modules

make[1]: 进入目录“/usr/src/linux-headers-5.4.18-110-generic”

CC [M] /home/kylin/hello/hello.o

Building modules, stage 2.

MODPOST 1 modules

CC [M] /home/kylin/hello/hello.mod.o

LD [M] /home/kylin/hello/hello.ko

make[1]: 离开目录“/usr/src/linux-headers-5.4.18-110-generic”

查看编译后的文件信息

kylin@kylin-pc:~/hello$ ls

hello.c hello.ko hello.mod hello.mod.c hello.mod.o hello.o

Makefile modules.order Module.symvers

加载 hello.ko模块并查看打印信息

kylin@kylin-pc:~/hello$ sudo insmod hello.ko

kylin@kylin-pc:~/hello$ lsmod | grep hello

hello 16384 0

kylin@kylin-pc:~/hello$ dmesg

[24599.690084] Hello World enter

4.2 打包成 deb包

4.2.1 打包准备

创建需要打包的模块目录，此处为 hello（此处的 hello目录需与 4.1章节的 hello

目录做区分，可使用其他名称，如 hello-1.1）。

7

kylin@kylin-pc:~$ mkdir hello

创建其他相关目录

kylin@kylin-pc:~$ mkdir hello/DEBIAN

kylin@kylin-pc:~$ mkdir -p hello/etc/modules-load.d

kylin@kylin-pc:~$ mkdir -p hello/lib/modules/`uname -r`/extra

在 hello/DEBIAN目录下编写 control文件，内容见下：

Package: hello

Version: 1.1

Depends: linux-image

Architecture: amd64

Maintainer: kylin <kylin@kylinos.cn>

Priority: optional

Description: make ko to deb test

在 hello/DEBIAN目录下编写 postinst文件，此文件主要用于 deb安装之后自动

加载驱动到内核，其中 depmod命令用于更新/lib/modules/`uname -r`/modules.dep

文件，使modprobe命令能够找到驱动位置。modprobe命令用于加载驱动。内容如下:

#!/bin/sh

depmod

modprobe hello

exit 0

在 hello/DEBIAN目录下编写 postrm文件，此文件主要用于 deb卸载之后自动卸

载驱动并更新/lib/modules/`uname -r`/modules.dep文件，内容如下:

#!/bin/sh

modprobe -r hello

depmod

exit 0

在 hello/etc/modules-load.d目录下编写 hello.conf文件，添加开机启动之后自动

加载的模块名称，内容如下:

hello

8

拷贝 hello.ko至 hello/lib/modules/`uname -r`/extra/

kylin@kylin-pc:~$ cp hello.ko hello/lib/modules/`uname -r`/extra

hello目录的文件情况

kylin@kylin-pc:~/hello$ tree

.

├── DEBIAN

│ ├── control

│ ├── postinst

│ └── postrm

├── etc

│ └── modules-load.d

│ └── hello.conf

└── lib

└── modules

└── 5.4.18-110-generic

└── extra

└── hello.ko

7 directories, 5 files

4.2.2 打包

将已编好的 ko打包成 deb

kylin@kylin-pc:~$ sudo dpkg -b hello hello_1.1_amd64.deb

dpkg-deb: 正在 'hello_1.1_amd64.deb' 中构建软件包 'hello'。

【注意】编译 hello.ko和打包成 deb的环境需保持一致，否则在打包过程可能会出

现各种问题。

4.3 安装与卸载 deb包

4.3.1 安装与验证

安装此 deb包

9

kylin@kylin-pc:~$ sudo dpkg -i hello_1.1_amd64.deb

(正在读取数据库 ... 系统当前共安装有 390548 个文件和目录。)

准备解压 hello_1.1_amd64.deb ...

正在解压 hello (1.1) 并覆盖 (1.1) ...

正在设置 hello (1.1) ...

正在处理用于 kysec-utils (3.3.6.1-0k6.50) 的触发器 ...

查看 hello驱动是否已经加载

kylin@kylin-pc:~$ lsmod | grep hello

hello 16384 0

重启查看驱动是否自动加载

kylin@kylin-pc:~$ sudo reboot

kylin@kylin-pc:~$ lsmod | grep hello

hello 16384 0

4.3.2 卸载与验证

卸载 deb包

kylin@kylin-pc:~$sudo dpkg --purge hello

(正在读取数据库 ... 系统当前共安装有 390549 个文件和目录。)

正在卸载 hello (2.10.2-1) ...

正在处理用于 man-db (2.10.2-1) 的触发器 ...

正在处理用于 install-info (6.8-4build1) 的触发器 ...

查看 hello驱动是否卸载

kylin@kylin-pc:~$ lsmod | grep hello

【注意】如需在系统更新内核时自动编译并加载驱动，请参照 dkms驱动方式，本

文档不涉及自动编译并加载驱动。

	银河麒麟桌面操作系统非DKMS驱动
	制作流程及说明
	版本说明
	1 非dkms驱动范围
	2 非dkms核外驱动包名规范
	3 非dkms核外模块编译成deb的流程
	3.1 源码编译成ko模块
	3.1.1 obj-[x]说明
	3.1.2 make命令说明

	3.2 将ko模块打包成deb
	3.2.1 DEBIAN目录说明
	3.2.2 具体安装目录说明

	4 非dkms核外驱动源码打包成deb实例
	4.1 非dkms核外驱动模块编译ko
	4.1.1 源码准备
	4.1.2 编译

	4.2 打包成deb包
	4.2.1 打包准备
	4.2.2 打包

	4.3 安装与卸载deb包
	4.3.1 安装与验证
	4.3.2 卸载与验证

